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Abstract—Culture is the social norm that often dictates a
person’s thoughts, decision-making, and social behaviors during
interaction at an individual level. In this study, we present a com-
putational framework that automatically assesses an individual
culture attribute of power distance (PDI), i.e., the measure to
describe one’s acceptance of social status, power and authority
in organizations through multimodal modeling of a participant’s
expressive prosodic structures and brain connectivity using a
social condition-enhanced network. In specific, we propose a joint
learning approach of center-loss embedding network architecture
that learns to “centerize” the embedding space given a particular
social interaction condition to enhance the PDI discriminability
of the representation. Our proposed method achieves 88.5% and
73.1% in binary classification task of recognizing low versus
high power distance on prosodic and fMRI modality separately.
After performing multimodal fusion, it improves to 96.2% of
2-class recognition rate (7.7% relative improvement). Further
analyses reveal that average and standard deviation of speech
energy are significantly correlated with power distance index; the
right middle cingulate cortex (MCC) of brain region achieves the
best recognition accuracy demonstrating its role in processing a
person’s belief about power distance.

Index Terms—culture dimensions, fMRI, prosody, center-loss
embedding, power distance index

I. INTRODUCTION

IN human society, culture is a complex construct resulting
from a composition of primitive attributes such as belief,

knowledge, customs, and many more common habits that
human possesses in shaping the society as a whole [1].
Anthropologists have long considered that the formation of
culture is based on human’s unique capability in transmitting
and influencing each other’s habits and thoughts in a given
society through social learning [2]. The culture emerges from
ecological social conditions and drives behaviors which affects
our social goals, morals and mindsets toward life. It has been
shown that under different social settings, the culture guides
our action and decision toward life at an unconscious level and
shapes up to the diverse organizations [3], [4]. This particular
social aspect also underlies each individual’s behaviors, social
interaction dynamics, modulates the development of personal-
ity and attitudes, and affects our decision toward life events.
To better describe the effects of culture and its relationship to
human behaviors, Hofstede develops the cultural dimension
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theory that has been widely used as a core framework for
understanding cross-cultural communication [5], [6]. Hofstede
states that there are six dimensions of cultures, including
power distance index (PDI), individualism vs. collectivism
(IDV), uncertainty avoidance (UAI), masculinity vs. femininity
(MAS), long-term orientation vs. short-term orientation (LTO)
and indulgence vs. restraint (IND). Many research has been
dedicated in investigating and employing Hofstede’s cultural
dimensions to understand how these values affect our life,
e.g., Taras et al. examine the use of Hofstede’s cultural value
dimensions for predicting organizational and employee perfor-
mance outcomes [7]. Among the six dimensions of Hofstede’s
culture, PDI refers to the cultural construct indicating how the
power is distributed and the extent in which social inequalities
are accepted and viewed as natural in a society [6], [8]. It can
further be used to describe an individual’s belief about power,
authority and status in organizations [9].

PDI often varies from culture to culture, which makes it as a
critical component in studying inter-cultural communication.
People in society with high PDI tend to conform with the
social stratification, which means “everyone has a social place
that needs no further justification” [10]. In contrast, people
in low PDI society prefer more equal status, interactions
and inalienable rights to distribute power equally, where phe-
nomenon of social inequality requires more justification and
democratic consent. The effect resulting from differences of
PDI is often observable when people engage in interactions
under different conditions of social status. For instance, people
in low PDI condition exist open door policy which superiors
are not only open to inferiors, but subordinates are also more
likely to be willing to challenge or suggest to their superiors;
on the contrary, subordinates in high PDI society are unlikely
to approach and contradict their bosses directly [5].

In the domain of human-centered multimedia processing,
culture provides additional behavior modulation manifested
in nonverbal and supplementary cues which leads to better
communication of human in memory, understanding and per-
ception. Studies have claimed the importance in considerig
culture factors [11] or personality [12], [13] since behaviors
and signals that human generates depend on personal cultural
background and interaction contexts. Furthermore, studies in
[14] and [15] indicate culture as well as personality do
influence one’s perception on video, e.g., different contexts
in which participants are induced would result in varying
expressions, which should be taken into consideration in devel-
oping computational modeling. Researchers additionally have
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already examined impacts of human factors such as cultural
and personality traits, to understand their effects toward human
daily life and interactions. For instance, Guntuku et al. [16]
have proposed algorithm in Quality of Experience (QoE) mod-
eling and management with comprehensive investigations on
contexts and human factors of QoE system. They have shown
that personal and cultural traits are significant impact factors
in predicting QoE, especially on the intensity of negative
influences. In more recent works, Varini et al. [17] propose a
customized egocentric video recommendation system based on
3D Convolutional Neural Network (CNN) approach to embed
visual apparent motion and real motion feature representations
together. By training with each user’s preference, the visual
semantic classifier assesses the correlation between extracted
key shots in cultural heritage scenario and users’ preferences.
Consequently, this study also points out the importance of
quantitatively modeling the human behavioral data with one’s
cultural and personal traits.

While many of these researches have demonstrated effec-
tiveness of using Hofstede’s culture dimensional framework
in understanding human communication, there still exists
limitation in quantifying cultural constructs based on conven-
tional self-reported instruments. For example, while Hofstede’s
culture framework has been used as a world-wide instrument in
quantifying cultural constructs specifically relevant in business
setting, the large-scale validity of such a quantification scheme
is often at doubt. Even the current largest scale studies (e.g.,
[18]–[20]) conducted in numerous countries draw conclusions
relying on few sample data points collected with a limited
longitudinal analysis time span. Additionally, recent works
in cross-cultural study have started to investigate methods in
improving Hofstedes systems of culture measurements, e.g.,
Taras et al. [21] propose to improve national-wide cultural in-
dices by using longitudinal meta-analysis of Hofstedes culture
dimensions in deriving country-wide cultural ranking, which
is shown to provide a more accurate and advanced guidance
for managers to optimize the performance of their organization
in cross cultural conditions. Moreover, most previous works
regard cultural power factor as a unidimensional construct,
which point out the limitations of using self-report instru-
ments. For example, research in [22] mentions that the main
issue in affecting the reliability and validity of using self-report
measurement is the social desirability bias, i.e., participants
would often respond in a socially acceptable way. For example,
individuals may be more likely to response “yes” or “no”
regardless of question content that is known as acquiescent or
non-acquiescent, respectively. Furthermore, [23] claims that
the use of self-report instruments lacks measurement invari-
ance from participants across seven nations and needs further
modification for cross-cultural comparison. On the other hand,
third person ratings through observation have been widely
used due to limitations of self-report instrument. However,
study in [24] also demonstrate issues of validity and reliability
of using manual (human-based) observational measurements,
such as inter-rater, intra-rater, test-retest reliability, internal
consistency (i.e., measurements unidimensionality should be
checked) and measurement error.

We argue that developing computational modeling technique

that is capable of objectively quantifies behaviors and directly
models signals of interest in a data-driven approach should
be taken along with these existing scales for measuring the
complex cultural construct not only to improve the validity and
reliability but also to enable longitudinal studies potentially
across nations at scale. Hence, aside from the issue of con-
tinuous modification on the definition of cultural dimensions,
many of these issues in studying cultural constructs for human
communication still suffer from a lack of objective methods
that hinders systematic large-scale studies and even adoption
to real-world applications. Unlike psychological constructs of
emotion states, where a tremendous algorithmic development
has progressed well over a decade since the term of “affective
computing” was first proposed [25]. This large body of compu-
tational studies concentrate on developing automated methods
in recognizing emotion from measurable human signals using
machine learning techniques, e.g., performing emotion recog-
nition using speech [26], [27], facial expressions [28], body
gestures [29], [30], neuro-responses or physiological signals
[31], [32] and multimodal behaviors [33], [34].

While cultural dimensions impact our daily life and be-
haviors during interpersonal communications, limited, if any,
researches has dedicated to automatic computation of an
individual’s cultural dimensions from measurable behaviors.
Our previous work has demonstrated that PDI measure of
an individual could be assessed automatically by modeling
the interlocutor’s prosodic expressions during a face-to-face
conversation when considering its differential manifestations
simultaneously across different social conditional settings [35].
Prosodic structure during human spoken dialog not only
reflects our behaviors and internal states but implies discrim-
inatory power of attitudinal expressions of social interaction.
Our previous work has proposed a first attempt in deriving
objective method to automatically recognize PDI dimension
through speech prosody. In this work, we continue to extend
by proposing a framework in integrating both expressive
vocal characteristics and internal brain connectivity to advance
the PDI recognition accuracy. In the following, we will list
relevant works and summarize the specifics of our contribution
in this work.

A. Related Works

Spoken dialog is the most natural form of our real-world
interactions and communications in our social life. It is the
most important vehicle for humans to transmit social intent to
gain access to each other’s need, and the expressive behavior
manifestations of these social exchanges inevitably are modu-
lated by one’s cultural background. While there has not been
direct computational works in linking behaviors in spoken
interaction to one’s cultural background, a number of research
works have already pointed out that the expressive aspects of
speech prosody can be conceptualized as realization of two
different processes during spoken dialogs: the involuntarily-
controlled expressions of affects - the so-called emotions,
and the intentionally-controlled attitudinal functions of social
factor - the so-called attitude [36]. Research in [37] has shown
that low power individuals pay more attention to acoustic
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fluctuations than high power ones, resulting in higher emo-
tional prosody recognition accuracy which corroborates recent
researches [38] in indicating low power distance individuals
increase vigilance during the processing of perceptual cues.
These past works demonstrate that prosodic variation not only
indicates human internal states, e.g., mental states, emotion,
mood, but also significantly affected by social-cultural fac-
tors between dialog partners [39]–[41]. Furthermore, West et
al. [42] have used linguistic-based measurement of cultural
distance, which is based on languages genetic classification;
they report that these measurements are representative among
members of society and easy to operationalize for all lan-
guages, and are additionally significantly correlated to the
managerial values. Very few, if any, studies have investigated
paralinguistic aspects in a face-to-face conversational setting.
Except for study in [43], it has been found there exists
phonetic and paralinguistic differences for situation in talking
to people with polite vs. impolite social status. These suggest
that both expressive linguistic and paralinguistic measurements
carry information about one’s own cultural attribute of social
distance constructs.

Specifically, the relationship between attitudinal expressions
and social-cultural backgrounds has been quite extensive stud-
ied. For example, Mixdorff et al. and Barbulescu et al. [39],
[44] propose to use macro-prosodic parameters to distinguish
different types of social attitudes for each specified culture.
At the same time, since the variation of cultural background
affects realization of attitudinal expressions in social settings,
Shochi et al. investigate the effect of prosodic parameters for
inter-cultural (English, Japan and French) perception of affect
[45]. Aside from examining expressive vocal characteristics,
understanding the internal brain connectivity as a function of
social hierarchies, i.e., perception of social status when inter-
acting with dialog partners of different status, has also been
separately investigated in the field of neuroscience with the
availability of functional magnetic resonance imaging (fMRI)
technique. For example, Koski et al. [46] explore the nature
of social hierarchies and characteristics associated with social
status for both human and nonhuman; their findings indicate
that brain activity could be used to rapidly recognize the
social status. In addition, Liew et al. [47] propose to examine
how cultural differences affect an individual’s implicit self-
processing in different social conditions; their experimental
results demonstrate that several brain regions are activated
during observation of signals related to social dominance,
indicating the differences in social attitude are personally
rewarding.

1) Our Contributions: On the expressive side, while re-
search has shown that speech prosody plays an important
role in distinguishing social attitudes, limited works have
considered culture-prosody relationship at an individual level.
At the same time, while most of the past neuro-scientific
frameworks point out the strong relationship between social
hierarchies and brain activity, there has not been any principled
modeling techniques attempting to automatically recognize
an individual’s culture dimension from these collected brain
images.

In our previous work [35], we propose a social condition-

enhanced prosodic network (SC-ePN) that models an individ-
ual’s expressive prosodic structure by simultaneously consider-
ing its manifestation over three variants of social conditions.
SC-ePN obtains an initial promising accuracy in classifying
high versus low PDI index of an individual. In this work,
we extend beyond our previous work specifically with the
following additional contributions:

1) Multimodal recognition: develop a multimodal, i.e., ex-
pressive prosody characteristics with internal brain con-
nectivity, within a social condition-enhanced network,
i.e., through inclusion of a center loss constraint inte-
grated with respect to the exposed social conditions, to
obtain improved classification rates between high versus
low PDI cultural dimension.

2) Analyses: investigate the important prosodic variables
and brain regions in automatically inferring the PDI
measures.

3) Visualization: demonstrate the effect of our use of center
loss in constraining the learning of prosodic and brain
connectome networks embedding representations.

In short, the aim of this work is to automatically assess
personal culture value of PDI to further understand quanti-
tatively how an individual’s belief on power distribution in
society would be manifested in his/her attitudinal prosodic
structure during social conversation and also in the functional
activation within the brain when being exposed to different
social encounters. There already exists a number of computa-
tional works in assessing different complex human internal
constructs, e.g., affective state recognition [48], personality
assessment [49], and detection of social disorder [50], but
very limited, if any, work has worked on cultural constructs,
especially not in the multimodal context. By introducing the
use of our proposed deep social-condition enhanced network,
which not only models both modalities simultaneously but
also integrates information of such signal across different
conditions (where it is known that the culture value would
likely to impact these measurable human data), we present one
of the first works that demonstrate a high recognition accuracy
(96.2%) and systematically analyze the difference on each of
these modalities for subjects with high versus low PDI value.

The rest of the paper is organized as follows: Section 2
describes about our multimodal database, collection method-
ology, and power distance measurement. Section 3 describes
about research methodologies including multimodal feature
representation and our social condition-enhanced network.
Section 4 shows our experimental setups, results, analyses and
discussions. Section 5 concludes with future works.

II. DATABASE

A. The Multimodal Social-Distance Database

In this section, we will describe the dataset used in this
work, which includes both audio and fMRI data collection.
We recruit a total of 26 right-handed participants with normal
or corrected to normal vision for conducting both audio and
fMRI. The collection of 26 subjects has been demonstrated
to be practically sufficient for study in using fMRI-based
experimentation [51], [52]. All of the subjects are native
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Mandarin-speaking participants, who are students attending
graduate or undergraduate school (11 females, 15 males, 20-35
years old, mean = 23.23 years old, SD = 3.32). No person with
dysphasia, neurological or psychological disorder is included
in this study. Each of them is required to finish both audio and
fMRI experiments. Each subject is instructed to fill in basic in-
formation first. In the audio experiment, the protocol involves
asking the target subject to imagine interacting in face-to-
face conversation with two persons of different power status,
i.e., one as high power status comparing with him/her (e.g.,
professor or teacher in school) and another as a slightly higher
or similar status (e.g., classmate or friend). After conducting
experiments of audio recording, the subject is instructed to
become familiar with button-pressing device during fMRI
scanning. Then each subject performs block design fMRI
scanning experiment to record their brain functional activity.

1) Audio Data Collection: We design the audio experi-
mental protocol to investigate the relationship between ex-
pressive acoustic cues and an individual’s cultural attribute.
The experiment protocols ask the participant to imagine a
person of two different power status to do something for
them. The two social roles are designed as the subjects
respected professor/teacher (higher power status) and a se-
nior classmate/TA (similar power status). The former is the
role designed such that a participant would respect or even
feel stressed and nervous when thinking about meeting with
him/her, and the latter is a relaxing situation designed to
resemble when a participant imagine interacting with his/her
classmate or friend. Then our experimenter would play the
role of this person to engage in dialog with the subject. There
are 7 questions covering different topics of interaction, and
2 social settings (1 higher power status, 1 similar) for each
subject. The following is a list of the 7 conversation topics
used in the database to carry out the conversation:

1) There are two free meal tickets, how would you invite
him/her to join you?

2) You don’t know how to do your homework, how would
you ask him/her for help?

3) There is a job interview next week and you want some
advice, how would you say to him/her?

4) After you have a fight with someone, you want to seek
advice in handling the aftermath, how would you request
for help?

5) Your family run into financial difficulties and you are
considering about quitting school to find a full-time job,
how would you seek advice from him/her?

6) You fail the class with 3 points short preventing you
from obtaining the final graduation credits, how would
you ask for more points from him/her?

7) Your graduation exhibition is scheduled to take place
next week, how would you invite him/her to attend?

The 26 participants result in the audio dataset with a total of
364 (26*2*7) dialogs recorded in this experiment.

2) fMRI Data Collection and Pre-processing: Another goal
of the study is to investigate the discriminative power of func-
tional neural connectivity associated with processing social
distances when experiencing contexts of different power status.
We perform a block design in which targets power status

Fig. 1: It shows the paradigm scheme of fMRI block design
experiment. Both the block and null duration are 20 seconds.
There are a total of 4 blocks for each target social setting
(classmate, teacher) in each run with randomized order. One
run contains 8 event blocks and 8 nulls in total. For each block
accompanies with 1 null to return BOLD signal to baseline,
participant first watches the social setting for 1 second and
then responds with their choice of Yes/No of the activity with
target person during the 3 second stimuli. Therefore, there
are total (8(blocks)+8(null))*20(seconds) = 320 seconds in
this fMRI block design experiment.

person are displayed on the screen. Participants are instructed
to watch the visual stimuli and then decide whether he/she
would agree to do activities with the targeted status person.
The status varies from the acquaintance met often in class
or a professor with authoritarian image in school. There are
forty social activities of daily experience, for example, party,
shopping or gathering invitation, and dissertation discussion.
That is, each block shows the target status person paired
with different activities, and each participant is equipped with
button-pressing device (Yes/ No) hold in their right hand to
give their answer. The subjects are not informed about the
detailed contents of the experiments a-priori and have a brief
practice session for the task outside the MRI scanning room
to ensure they could understand the protocol.

MRI scanning is conducted on a 3T scanner (Prisma,
Siemens, Erlangen, Germany). T1 sequence (magnetization
prepared rapid acquisition gradient echo, MPRAGE) with
field-of-view of 240 × 240 mm, 256 × 256 matrix size and
192 slices are utilized for collecting high resolution structural
images. Functional images (task-based images and resting
state images) are acquired with gradient-echo EPI sequence
to capture the 168 whole-brain images in two runs with TR=
2000ms. We perform all necessary pre-processing steps on
the collected MRI data using SPM12 including correction
for motion, slice-timing acquisition differences (references
to the first slice), coregister to T1-weighted MR images,
normalize to standard anatomical template space and spatially
smoothing. Additionally, we perform interpolation to generate
image sample at 1 second time step to capture the continuous
variation within each stimulus.

B. Power Distance Index (PDI) Measurement

Our goal of this work is to automatically assess an indi-
vidual’s power distance index using multimodal data. Power
distance is first developed by Hofstede describing the extent
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where power inequalities is viewed as natural in society.
Furthermore, Sharma proposes that power distance consists of
two dimensions: power (POW) and social inequalities (IEQ).
POW indicates how individuals are related to authority while
IEQ describes ones’ hierarchical or egalitarian orientation. In
this work, we use POW scale as our numerical measure of
participant’s perception about authority and social interaction
in power relations to measure his/her PDI. POW involves each
subject to answer the 7-point Likert scale (ranging from 1 =
strongly disagree to 7 = strongly agree) questionnaire used to
assess a participant’s belief in power of social condition as
following:

1) I easily conform to the wishes of someone in the higher
position than mine.

2) It is difficult for me to refuse a request if someone senior
asks me.

3) I tend to follow orders without asking any questions.
4) I find it hard to disagree with authority figures.

After adding up scores from above questions, we binarize the
POW scale in our dataset, where 13 of them are considered
as having high PDI (higher than mean value), and rest of 13
are assigned to low PDI (lower than mean value).

III. RESEARCH METHODOLOGY

Our complete automatic PDI assessment framework is
shown as Figure 2. It consists of three components: 1) prosodic
and fMRI feature extraction, 2) center-loss social condition-
enhanced network, 3) power distance classification with mul-
timodal fusion. In the following sections, we will describe the
detailed approach of the three components mentioned above.

A. Acoustic Dynamic Prosodic Features

In this work, we extract the following 13 dynamic prosodic
frame-level features proposed by [53] with Praat package
[54] from participant’s speech during each interaction scenario
mentioned above.

• 1 Duration of the voice segment
• 6 Coefficients of 5-degree polynomial function to model

pitch contour
• 6 Coefficients of 5-degree polynomial function to model

energy contour
We extract pitch and energy at 10 ms intervals and break
the contours into pseudo-syllabic segments, and approximate
segments of pitch and energy contours by using Legendre
polynomial expansions. The arguments for calculating pitch in
Praat are shown in Table I. In this section we will describe two
steps for dynamic prosodic feature extraction: 1) segmentation,
and 2) contour approximation.

1) Segmentation: After we obtained pitch and energy con-
tour from Praat, we segment long pitch contours into syllable-
like regions by detecting the valley points of the energy
contour [55]. These valley points generally serve as segment
boundaries and we impose minimum duration constraint of 60
ms to avoid making a segment too short, which enables us to
calculate Legendre polynomial expansions with six terms.

TABLE I: Parameters of pitch extraction setting in Praat

Args. Value

Analysis window length (ms) 30
Time step (ms) 10
Pitch floor (Hz) 75
Pitch ceiling (Hz) 350
Silence threshold 0.03
Voicing threshold 0.6
Voice/Unvoiced cost 0.14
Octave cost 0.01
Octave-jump cost 0.6
Number of candidates (max) 5

2) Contour Approximation: For each segmented contour
f(t), we carry out an approximation of pitch and energy
contour by taking M -th order Legendre polynomial expansion,
which is approximated as

f(t) =
M∑
i=0

ciPi(t) (1)

where Pi(t) is i-th order Legendre polynomial, ci is i-th order
coefficient, and we set M = 5 in this work. Notice that each
coefficient represents a particular aspect of the contour. c0
stands for mean of the contour, c1 stands for slope of the
contour, c2 stands for culvature of the contour, and c3, c4,
c5 model the fine detail. For each segment, we use these
six coefficients to be the contour representation. Combing
coefficients of pitch and energy, with the segment duration, we
obtain a 13 dimensional feature vector. And we further perform
context expansion per frame to obtain a total of 39 dynamic
prosodic features. These features are then z-normalized with
respect to each speaker.

B. Neural Connectivity Graph Embedding

Recent works in cognitive neuroscience have repeatedly
demonstrated the importance in quantifying dynamical pat-
terns of inter-regional brain connectivity from both resting
state and task-evoked fMRI to conduct neuro-scientific studies
[56], [57]. A recent deep representation learning method in
characterizing brain functional connectivity is through graph
embedding approach [58], which has shown its superior mod-
eling capacity in representing brain connectivity. In this work,
we also propose to use a neural connectivity graph embedding
approach that follows closely this particular approach.

Specifically, we make use of anatomical automatic labeling
(AAL) to split the brain into 90 region of interest (ROI)
[59] and calculate the mean of each region to be a ROI-level
descriptor. For each scanning session, we use a sliding window
approach with window length of 5 seconds and step length of
3 seconds. A 90 x 90 connectivity matrix is then calculated
using Pearson correlation coefficient as a measure of inter-
region connectivity which refers with the following equation:

Rij =
Cij√

Cii × Cjj

(2)

where R and C are correlation coefficient and covariance, re-
spectively. And we consider only positive value of correlation
and negative value is set to zero since spatial correlations
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Fig. 2: It shows the complete architecture of our multimodal social condition-enhanced network (SC-eN) for power distance
recognition: ROI-based functional connectivity graph embedding, dynamic modeling of prosodic pitch and energy contour,
training networks by jointly optimizing setting-wise center-loss with cross entropy criteria, performing recognition using
functional encoding of network output with support vector machine.

are viewed as edge weights. Finally, we obtain RG high-
dimensional graph embedding descriptors, where G is m*(m-
1)/2 and m=90. In order to construct into smaller number
of uncorrelated variables of features, we conduct principle
component analysis (PCA) by setting the components to be
50 to obtain a reduced dimension of neural connectivity
representation.

C. Social Condition-Enhanced Network
Since culture construct, i.e., PDI as measured by POW

specifically in this work, either modulates the prosodic expres-
sions or results neural connectivity in a non-linear yet subtle
manner, in order to enhance the discriminatory representation
power of these modalities, we leverage the natural differences
of the manifested signal from the subject’s expressed/measured
prosodic/fMRI data in different social conditions (as explicitly
primed during the experimental setup, i.e., interacting with
high and low power status person). Specifically, by introducing
the use of center-loss that constrains the modality-specific
embedding learning to “centerize” the representation per con-
dition by considering the two social settings simultaneously,
we can effectively enlarge the discriminatory information of
these embeddings toward power distance classification.

We propose to learn two different social condition-enhanced
networks, one for expressive prosodic network (SC-ePN)
and one for internal neural connectivity network (SC-eNN),
with the use of center-loss constraint. The use of center-loss
embedding has recently been applied to various recognition
tasks when integrated with neural network embedding; exem-
plary applications include face recognition [60]–[62], emotion
recognition [63], [64], and handwritten Chinese character
recognition [65], [66]. In this work, in order to uncover culture
value of power distance under different social conditions, we
perform joint optimization of both power distance and social
conditions, i.e., two optimization targets. The first optimization
is the target recognition attribute of power distance index as

measured by POW scale, LCE . And the center-loss lists as
follow is used to optimize across different social conditions to
further constrain the hidden layers:

Lc =
1

2

m∑
i=1

‖xi − cyi
‖22 (3)

where m is the number of training samples in a batch. xi
is the ith training sample. yi is the class (social setting)
corresponding to xi. cyi

denotes as the class center of ythi .
The SC-ePN and SC-eNN both includes three fully-connected
layers as shown in Figure 2. The complete loss function
in learning condition-enhanced network is a combination of
center-loss Lc that centralizes the social setting-specific feature
space and LCE learns to classify between high and low power
distance.

LTotal = LCE + λLc (4)

where λ refers to the centering degree and weighting between
two losses. We set 0.5 and 0.8 for SC-ePN and SC-eNN,
respectively.

D. Multimodal Power Distance Classification

Each of our social condition-enhanced network outputs
frame-level feature embedding of each subject’s interaction
scenario. Due to different length of every session, it results
in a varying number of sequences. We additionally apply
functional encoding to generate the final feature vector of
each participant’s session-level representation inputted to the
classifier by computing 15 statistical functions. The list of
functions includes maximum, minimum, mean, median, stan-
dard deviation, 1st percentile, 99th percentile, 99th − 1st

percentile, skewness, kurtosis, maximum position, minimum
position, upper quartile, lower quartile and interquartile range.

After encoding frame-level features, we employ two differ-
ent multimodal fusion techniques to integrate feature represen-
tations from different social settings of different modalities.
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TABLE II: It summarizes the Unweighted Average Recall (UAR) obtained in our proposed power distance recognition
experiment. P and C denote two different kinds of social condition setting, i.e., professor and classmate. DN indicates
representation derived from feed-forward neural network without center-loss, and CN is our proposed social condition-enhanced
prosodic network. Re-H/L represents categorical recall.

Audio (A) fMRI (f) Multimodal

DN CN
DN

PCA
CN

PCA
DN

Graph
CN

Graph

DN
Graph
PCA

CN
Graph
PCA

(A)CN+
(f)CN
PCA

(A)CN+
(f)CN
Graph

(A)CN+
(f)CN
Graph
PCA

P

Re-L 0.462 0.923 0.846 0.538 0.769 0.615 0.615 0.615 0.923 0.769 0.846
Re-H 0.528 0.846 0.769 0.769 0.385 0.615 0.538 0.462 0.923 0.846 0.923
UAR 0.5 0.885 0.808 0.654 0.577 0.615 0.577 0.538 0.923 0.808 0.885

C

Re-L 0.692 0.615 0.769 0.385 0.846 0.846 0.692 0.769 0.769 0.692 0.692
Re-H 0.692 0.615 0.769 0.615 0.462 0.692 0.615 0.846 0.692 0.615 0.846
UAR 0.692 0.615 0.769 0.5 0.654 0.769 0.654 0.808 0.731 0.654 0.769

P + C

Re-L 0.615 0.923 0.769 0.769 0.769 0.846 0.769 0.769 0.769 0.846 0.923
Re-H 0.615 0.846 0.615 1 0.538 0.538 0.538 0.692 0.923 0.846 1
UAR 0.615 0.885 0.692 0.885 0.654 0.692 0.654 0.731 0.846 0.846 0.962

One is based on early-fusion technique, i.e., concatenating
audio and neural features into one feature vector after per-
forming univariate feature selection (i.e., ANOVA) on each
modality separately. This can be seen as unimodal classifica-
tion which it obtains the final feature vector before learning
and classification steps. Another technique is based on late-
fusion that is sometimes called classifier fusion or multimodal
classification, i.e., by fusing the decision scores from audio and
neural modalities from classifier. The classifier selected in this
work is linear-kernel support vector machine that performs the
final social power distance recognition for each participant.

IV. POWER DISTANCE RECOGNITION EXPERIMENT

In this section, we present our recognition results on binary
classification between high and low power distance culture
dimension. Recognition accuracy is measured in unweighted
average recall (UAR) with the evaluation scheme done via
leave-one-person-out cross-validation. In further analyses, we
investigate the relationship between individual power status
and prosodic or neural connectivity measurements.

A. Experimental Setup
The network architectures of acoustic and neural connec-

tivity modality are listed as following table including network
layers, batch size, epoch, iteration and weight of center loss.
The complete network is trained using Adam (lr = 0.001).
We extract the hidden layer of 16-dimensions as participant’s
acoustic and neural connectivity representation at the frame
level. We compare our center-loss embedding network (CN)
to a network without center-loss embedding (DN) and list our
models from each modality:

• (A) Prosody: Compute 39 dynamic acoustic features and
learn a prosodic network with the structures with (CN-
Prosody) or without (DN-Prosody) center-loss embedding
in deriving the frame-level prosodic representation.

• (f) PCA: Perform principle component analysis on ex-
tracted 90-ROI features, and then learn the network with
(CN) or without (DN) center-loss embedding.

• (f) Graph: Calculate 90-ROI functional connectivity and
learn the network with (CN) or without (DN) center-loss
embedding.

• (f) Graph PCA: Calculate 90-ROI functional connectivity,
perform principle component analysis and then learn the
network with (CN) or without (DN) center-loss embed-
ding.

These features are then fed into statistical functional based
session-level encoding and further apply decision-level fusion
to perform final power distance binary classification for each
participant.

B. Experimental Results and Analyses

1) Individual Power Distance Recognition Results: Table II
summarizes our experimental results using different modalities
in left two columns and associated multimodal fusion results
in the right side. There are two different social settings for
each subject (P : professor, C: classmate/TA); P+C condition
fusion is denoted as the concatenated features from two social
settings after CN or DN neural embedding. All evaluation
metric used is unweighted average recall (UAR).

Our center-loss embedding network (CN) achieves the
best recognition rates among all the modalities, especially
in acoustic prosodic network; it obtains 88.5% recognition
rate compared to network without center-loss embedding
(DN) 61.5%, i.e., 2.7% relative improvement. Further we
perform multimodal fusion, which we merge the decision
scores of each modality into one feature vector and feed
it into final power distance recognition classifier. For in-
stance, (A)CN + (f)CN − PCA indicates concatenation
of classifiers’ predictions from trained ‘audio CN network’
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and ‘fMRI CN PCA network’. After performing late fusion
of audio and fMRI modalities, it reaches the accuracy of
96.2% by integrating CN-Prosody and CN-Graph PCA (7.7%
and 23.1% relative improvement over single modality strategy
of CN-Prosody and CN-Graph PCA respectively). However,
we observe that the fusion of CN-Prosody and CN-PCA
negatively impacts the recognition rate even when the CN-
PCA achieves a better accuracy than CN-Graph PCA. This
might due to the mismatch of computational complexity of
prosody and PCA embedding approaches; performing PCA
after functional connectivity (Graph) can effectively provide
complementary modeling power to acoustic prosodic network.
In general, the promising recognition accuracy is attributed to
non-linear centralization of both prosodic and neural connec-
tivity features within each social setting, it effectively uncovers
the discriminative power of these modalities representation.

(a) DN-Prosody (Professor) (b) CN-Prosody (Professor)

(c) DN-Prosody (Classmate) (d) CN-Prosody (Classmate)

(e) DN-Graph PCA (Professor) (f) CN-Graph PCA (Professor)

(g) DN-Graph PCA (Classmate) (h) CN-Graph PCA (Classmate)

Fig. 3: The visualization analyses of feature embedding
learned with deep network (DN) or center-loss network (CN).
Red dots indicates data samples from one of low power
distance subject, and Blue dots indicates data samples from
one of high power distance subject.

2) Feature Embedding Visualization: In order to measure
the clustering (centralization) effect on the learned feature
representations, we first visualize the learned DN-Prosody,
CN-Prosody, DN-Graph PCA and CN-Graph PCA features
then compute the mean Silhouette Coefficient of all samples

TABLE III: It summarizes the Silhouette coefficients between
low/high power distance and DN/CN models on two social
roles and whole group (Avg.).

Audio (A) fMRI (F)

DN CN DN CN

Professor
LPD 0.1477 0.7114 0.0311 0.9501
HPD 0.1386 0.6766 0.0703 0.9516

Classmate
LPD 0.1147 0.7655 0.0282 0.9504
HPD 0.1311 0.7425 0.1089 0.9504

Avg.
LPD 0.1312 0.7385 0.0297 0.9503
HPD 0.1349 0.7096 0.0896 0.9510

using following equation as measures of clustering effect:

s(i) =
a(i)− b(i)

max {a(i), b(i)}
(5)

where a(i) is the average distance between point i and
other samples in its own class, and b(i) is distance between
point i and another class centroid. The s(i) for each sample
ranges from −1 (spreading, overlapped cluster) to 1 (tight,
well-separated cluster). Here, we report the mean value of
Silhouette Coefficient of all samples shown in Table III. In
general, we observe that the proposed center network (CN)
structure shows a distinct cluster for high and low culture trait
of power distance. Without training the framework with center
loss criterion, the feature space is highly-overlapping even
when the network is tuned using cross entropy with respect
to the target power distance label. However, after carrying out
center-loss constraint with respect to the social setting, the
feature spaces of either of high or low power distance subject
are becoming concentrated and clearly non-overlapping on
both prosodic and neural connectivity feature spaces. This
effect is quite significant when compared between DN and
CN networks, especially on fMRI connectivity embedding,
i.e., 0.9206 and 0.8614 increased in coefficient values on low
and high power distance.

An analysis of visualizing feature embedding under two
different social settings (Professor and Classmate) by DN
and CN are presented in Figure 3, which shows examples
of randomly selected two subjects prosodic and fMRI feature
representations without center-loss (DN) and with center-loss
embedding (CN) by performing t-SNE visualization. The red
dots (cluster 0) indicate data from subject of low power
distance, and blue dots (cluster 1) indicate the subject of
high power distance. It is clear to observe that the feature
spaces after center-loss embedding of either prosodic or fMRI
are becoming highly-concentrated and indeed separating each
class, showing the effective discriminative modeling ability.

3) Analyses of Acoustic Properties with Power Distance
Measure: Since every session is of different length resulting
in varying number of sequences, in order to analyze the
relationship between the culture power distance and prosodic
features intuitively, we compute a total of 38 statistical func-
tional features on F0, energy, duration and voice rates, etc;
there are then used as the prosodic factors in this analysis.
With two social settings, professor and classmate, we calculate
the Pearson correlation coefficients between individual power
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(a) Averaged Energy (Professor)

(b) Std. Energy (Professor)

(c) Averaged Energy (Classmate)

(d) Std. Energy (Classmate)

Fig. 4: The box-plot analyses between prosodic features and
power distance index. The y-axis indicates the values of
average value or standard deviation of log energy. The x-
axis indicates corresponding question topics of professor or
classmate social settings, left and right of each question
represent LPD and HPD respectively.

TABLE IV: The table summarizes the recognition results that
used each ROI region’s BOLD signal as feature representation,
and lists results that around 0.7 to indicate the discriminative
power under regions of interest.

AAL
ROI

UAR
(Professor)

UAR
(Classmate)

UAR
(Fusion)

References

Rolandic
operculum (L)

ROI-17
0.692 0.654 0.731

Right finger clicking
activity during
paradigm task

Anterior
cingulate (L)

ROI-31
0.654 0.692 0.769 [67], [68]

Middle
cingulate (R)

ROI-34
0.846 0.885 0.923 [69]–[71]

Superior
occipital (L)

ROI-49
0.654 0.692 0.731

Visual attention
during paradigm task

Superior
occipital (R)

ROI-50
0.692 0.731 0.769

Visual attention
during paradigm task

Fusiform (L)
ROI-56

0.692 0.692 0.731 [72]–[74]

Inferior
parietal (L)

ROI-61
0.654 0.654 0.692 [75]

Angular (L)
ROI-65

0.654 0.654 0.692 [76], [77]

Globus
pallidus (R)

ROI-76
0.731 0.692 0.769 [78]

distance and each feature to obtain the correlation coeffi-
cients. There is an interesting observation from the correlation
analysis showing that specifically the voice energy in dB
is significantly correlated with an individual power distance
measure, i.e., positive correlation with average value of energy
in topic 5 of classmate setting, 0.453 (p = 0.02), and negative
correlation with standard deviation of energy especially in
topic 3 of professor setting (p = 0.003). The consistent trend
of these two prosodic features indicates that indeed prosodic
characteristics possess discriminative power for individual
status of power distance.

We display box plots of the full range of variation of
these two significant prosodics features, i.e., demonstrating
minimum to maximum value, the interquartile range (IQR) and
the associated typical value (median). There are 7 conversation
topics and 2 different social settings displayed in Figure 4, it is
clear to notice that averaged energy of HPD are slightly higher
than LPD regardless of the social setting. On the contrary, the
standard deviation of energy of HPD are slightly lower than
LPD no matter in professor or classmate settings, especially
obvious in professor setting. It indicates that the distribution of
HPD is more concentrated at mean than LPD’s for this feature.
This may reveal the subjects perceived with high power status
tend to have consistent prosodic expressions since lower value
of standard deviation.
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4) Analyses of Brain Regions with Power Distance Mea-
sure: In this section, since we apply Automated Anatomical
Labeling (AAL) to divide brain into 116 regions and extract
former 90 regions to be our neural connectivity data. In
order to investigate regions that impact the performance of
individual power distance recognition, we take raw features
from BOLD signal to perform power distance recognition
using the following steps:

1) extract AAL 90 regions’ activation data after fMRI data
preprocessing.

2) perform maximum activation value encoding (Max-
Pooling) for each session of settings on professor or
classmate.

3) perform power distance recognition tasks for professor-
setting only, classmate-setting only and fusion of two
social settings.

Accuracy is measured using unweighted average recall (UAR)
with the evaluation scheme for this task and done via leave-
one-person-out cross-validation.

The results are shown on Table IV, we list the UAR
around 0.7 of each social setting and also fusion of all
social settings. In addition, we also list the ROIs of brains
which are correlated to the power distance measure. The most
promising accuracy 0.923 obtained is from modeling the right
middle cingulate (ROI-34), which outperforms all other ROIs’
recognition accuracy. The middle cingulate cortex (MCC) has
been identified to support social information processing and
boost the execution of social behaviors and processing time of
social stimuli [69], [70]. Furthermore, this region is known to
play a vital role in performing decision-making tasks which is
similar as our block-design fMRI experimental setups. Thus,
while these evidences are preliminary, they highlight MCC
may be responsible for decision making choices during the
situation of social interaction reflecting the differences in PDI
value of the subject.

V. CONCLUSIONS AND FUTURE WORKS

Culture affects our daily life, influences the manner we
learn, live and behave, and further shapes our personalities.
Hofstede has developed a theory of cultural dimension that
uses six attributes as measures to understand the phenomenon.
One of these attributes, power distance index (PDI) is an
inner trait that measures an individual’s belief about status of
power distance which reflects in human’s expressive behaviors.
While theoretical conceptualization of individual power status
belief has received much attention, especially in understanding
personalities, limited research has progressed in terms of mod-
eling approaches to automatically recognize one’s PDI from
either expressive behaviors and/or internal cognitive brain
activation. In this work, we present a computational framework
in automatically assessing an individual power distance index
using a unique dataset with expressive prosodic cues and
internal brain connectivity collected from the same subject.
Specifically, we propose to learn an enhanced multimodal
data representation by jointly considering social settings with
center-loss criterion during network training. It successfully
achieves an improved recognition accuracy using either single
modality or multimodal data from our previous work. By

visualizing feature embedding, it reveals that by centralizing
the feature representations, our SC-eN effectively enhances
the discriminative power of prosodic and neural connectivity
representation for power distance recognition. Furthermore,
the analyses of acoustic descriptors show an interesting pattern
that the voice energy of individuals with HPD is significantly
different from LPD. On the other hand, the analyses of fMRI
data show right middle cingulate (MCC) plays an important
role in information processing of social cognition corrobo-
rating with several past research. It points to an evidence
that this region may also be responsible for decision-making
mechanism for people during interaction revealing different
personal power distance attribute.

There are several directions of future works to pursue.
First key consideration is to improve the database diversity
and scale by seeking partnerships and data from different
cultural groups or life experiences and ranks, i.e., teacher
vs. student, graduate vs. undergraduate student, and native
vs. foreigner. Hofstede indicates the differences of individual-
ism/collectivism, high/low power distance, strong/weak uncer-
tainty avoidance, and masculinity/femininity in teacher/student
and student/student interaction [79]. On the other hand, in
previous cross-cultural research, [9] recruited a total of 734
participants from China and US, and [80] included 263 work-
ers from 28 different countries to generalize their conclusions.
While they have an expanded scale of subjects, none of these
works have collected actual behavior data, i.e., mostly rely on
self-report measures. Therefore, due to the comparably limited
data size in this work, to validate our study further, we would
like to perform larger-scale study with additional subjects
from different nationalities or with different life experiences or
ranks and potentially introduce a more immersive experience
for subjects when collecting fMRI data. For example, we could
replace the experimental materials used in this work from
simply showing text to a first-person view of video stimuli
showing an interacting scenario with authoritative professor
or TA/classmate. Secondly, we will continue to advance our
technical framework to understand the complex interplay
between expressive prosodic characteristics when interacting
with partners of different power status and internal brain
functional activation when performing decision-making during
social encounters given this unique collection of datasets.

Furthermore, since almost all studies working on power
distance examined it as a cultural factor rather than recognize
them as a target through behavior and signal modeling. For
example, studies in [8], [9] performed multiple regression
to examine whether power distance influence cultures of
different nationalities. By having a data-driven learning-based
analytics in quantifying cultural construct of an individual
power distance, we would continue to expand our research
scale with different disciplines across nations to have a more
objective method in deeper understanding of cross-cultural
phenomenon. Finally, we would like to continue understand
whether other dimensions of culture attributes could also be
inferred automatically through the combination of expressive
behavior cues and internal brain functions to further enable
better design of human-centered technology and services for
real world applications.
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